An Antifungal Mechanism of Protolichesterinic Acid from the Lichen Usnea albopunctata Lies in the Accumulation of Intracellular ROS and Mitochondria-Mediated Cell Death Due to Apoptosis in Candida tropicalis

نویسندگان

  • S. N. Kumar
  • C. Mohandas
چکیده

Candida species causes superficial and life-threatening systemic infections and are difficult to treat due to the resistance of these organism to various clinically used drugs. Protolichesterinic acid is a well-known lichen compound. Although the antibacterial activity of protolichesterinic acid has been reported earlier, the antifungal property and its mechanism of action are still largely unidentified. The goal of the present investigation is to explore the anticandidal activity and mechanism of action of protolichesterinic acid, especially against Candida tropicalis. The Minimum Inhibitory Concentration (MIC) value was established through microdilution techniques against four Candida species and out of four species tested, C. tropicalis showed a significant effect (MIC: 2 μg/ml). In the morphological interference assay, we observed the enhanced inhibition of hyphae when the cells were treated with protolichesterinic acid. Time-kill assay demonstrated that the maximum rate of killing was recorded between 2 and 6 h. C. tropicalis exposed to protolichesterinic acid exhibited an increased ROS production, which is one of the key factors of fungal death. The rise in ROS was due to the dysfunction of mitochondria caused by protolichesterinic acid. We confirmed that protolichesterinic acid-induced dysfunction of mitochondria in C. tropicalis. The damage of cell membrane due to protolichesterinic acid treatment was confirmed by the influx of propidium iodide and was further confirmed by the release of potassium ions. The treatment of protolichesterinic acid also triggered calcium ion signaling. Moreover, it commenced apoptosis which is clearly evidenced by Annexin V and propidium iodide staining. Interestingly protolichesterinic acid recorded excellent immunomodulatory property when tested against lymphocytes. Finally protolichesterinic acid showed low toxicity toward a normal human cell line Foreskin (FS) normal fibroblast. In in vivo test, protolichesterinic acid significantly enhanced the survival of C. tropicalis infected Caenorhabditis elegans. This investigation proposes that the protolichesterinic acid induces apoptosis in C. tropicalis via the enhanced accumulation of intracellular ROS and mitochondrial damage, which leads fungal cell death via apoptosis. Our work revealed a new key aspect of mechanisms of action of protolichesterinic acid in Candida species. This article is the first study on the antifungal and mechanism of action of protolichesterinic acid in Candida species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017